On Estimates for the Weights in Gaussian Quadrature in the Ultraspherical Case
نویسنده
چکیده
In this paper the Christoffel numbers av n for ultraspherical weight functions wk , wx(x) = (\ -x ) ~ ' , are investigated. Using only elementary functions, we state new inequalities, monotonicity properties and asymptotic approximations, which improve several known results. In particular, denoting by dv „ the trigonometric representation of the Gaussian nodes, we obtain for À e [0, 1] the inequalities and similar results for X <£ (0, 1). Furthermore, assuming that a\ ' remains in a fixed closed interval, lying in the interior of (0, n) as n —► oo , we show that, for every fixed A > -1/2 , awe *sin2x0w¡l A(l-A) n + * 2{n + a) sin 8:,' u ,n A(l -A)[3(A+l)(A-2) + 4sin2e^J 8(« + /.)4sin4Ö v , n 0(n 7)
منابع مشابه
Some Remarks on the Construction of Extended Gaussian Quadrature Rules
We recall some results from a paper by Szego on a class of polynomials which are related to extended Gaussian quadrature rules. We show that a very efficient algorithm, for the computation of the abscissas of the rules in question, was already described in that paper. We also point out that this method extends to rules for integrals with an ultraspherical-type weight function. A bound for the e...
متن کاملAdaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum
A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...
متن کاملOn Generalized Gaussian Quadrature Rules for Singular and Nearly Singular Integrals
We construct and analyze generalized Gaussian quadrature rules for integrands with endpoint singularities or near endpoint singularities. The rules have quadrature points inside the interval of integration and the weights are all strictly positive. Such rules date back to the study of Chebyshev sets, but their use in applications has only recently been appreciated. We provide error estimates an...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملInterpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature
We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010